- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chiba, Satoshi (3)
-
Ishizuka, Chikako (3)
-
Fujio, Kazuki (2)
-
Ebata, Shuichiro (1)
-
Inakura, Tsunenori (1)
-
Ivanyuk, Fedir (1)
-
Katabuchi, Tatsuya (1)
-
Okumura, Shin (1)
-
Shimada, Kazuya (1)
-
Usang, Mark (1)
-
Zhang, Xuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ishizuka, Chikako; Zhang, Xuan; Shimada, Kazuya; Usang, Mark; Ivanyuk, Fedir; Chiba, Satoshi (, Frontiers in Physics)Understanding of fission properties of super-heavy nuclei (SHN) is essential not only for the synthesis of new elements but also for astrophysical nucleosynthesis because fission fragments from SHN are recycled as the seed nuclei of the r-process. A recent discovery of the r-process site by the gravitational wave observations requires more precise nuclear information for the detailed simulation of the r-process nucleosynthesis. However, the fission mechanisms of the SHN are not understood well, and therefore theoretical predictions of distributions of the fission fragments of SHN are very model-dependent. Our four-dimensional Langevin model can calculate various properties of the fission fragments, such as the distribution of fission yields, kinetic energies, and deformation of fission fragments and their correlations just after scission. Those results are consistent with the experimental data, especially in the actinide region without adjusting parameters. Based on such a reliable model, we previously investigated the fission of representative SHN where the experimental data exist and found that doubly-magic shell closure of 132 Sn and 208 Pb dominates the fission process. This paper demonstrates the results of our calculations for the systematics of fission yield and the total kinetic energies from the neutron-rich to the neutron-deficient side of SHN. We also show decomposition of fission modes, such as standard/super-long/super-short modes, based on a Brosa-like concept.more » « less
-
Fujio, Kazuki; Ebata, Shuichiro; Inakura, Tsunenori; Ishizuka, Chikako; Chiba, Satoshi (, Frontiers in Physics)We studied the fission barrier of 236 U with a microscopic mean-field model employing Skyrme-type effective interaction. It has been known that the microscopic mean-field calculation had a trend of overestimating the fission barriers derived from the fission cross section, and our results were found to be in accord with it. To reveal a major factor of the discrepancy, we investigated various components of the Skyrme energy-density functional building of the fission barrier height by a static mean-field model, including nuclear pairing correlation. We found that the spin-orbit and pairing terms affected the fine structure of the fission barrier as a function of elongation of the nucleus. Therefore, we investigated the sensitivity of the fission barrier height on the pairing strength, considering the change of level density along the calculated fission path.more » « less
An official website of the United States government
